

Паспорт продукта

UPWM87 смесь ионообменных смол

Описание продукта

UPWM87 представляет собой высокоёмкую смесь ионообменных смол, состоящую из сильнокислотных анионитов и катионитов с гелевой структурой. Готова к использованию. Подходит для приготовления сверхчистой воды и доочистки воды, а также для очистки радиоактивных сточных вод систем первичной очистки на атомной электростанции удаления радиоактивных элементов В, Li, K, Na, Cl, F т.д. и имеет, очень высокую обменную емкость и осмотическую стабильность. Предназначена для применений, не предполагающих регенерацию. Компоненты данной смеси могут быть разделены, отрегенерированы и вновь перемешаны, однако, степень очистки воды после такой регенерации возможно не будет столь же высокой, как в случае использования смеси отрегенерированной и перемешанной на заводе производителя.

Особые свойства данного продукта могут быть использованы оптимально лишь в том случае, если технология и конструкция фильтра соответствуют современному уровню.

Физические и химические свойства

Структура полимера	Полистирол сшитый ДВБ
Функциональная группа: Катион Анион	RS <mark>O3 H</mark> [†] R4N [†] OH
Ионная форма	н ⁺ / он
Физическая форма	Сферические частицы
Однородность	95% мин
Размер частиц	0.45-1.25 мм
Соотношение катион / анион по химическому эквиваленту	1/1
Общая обменная ёмкость, Катион (в натриевой форме) Анион (в хлоридной форме)	2.0 экв/л мин. 1.4 экв/л мин.
Влагосодержание, Н форма ОН форма	48-53% 5360%
Насыпная масса	700-740г/л
Максимальная температура: В не регенерирующих системах В регенерирующих системах	100°C (212°F) max. 60°C (140°F) max.
Конверсия (мин.)	99.9% (H form) 95% (OH form)
Регенерат	Кислота / NaOH

Техника безопасности

Сильные окислители, такие как азотная кислота, могут вызвать бурную реакцию при контакте с ионообменной смолой.

Токсичность

Учитывать данные листа безопасности. Он содержит информацию об обозначениях, транспортировке и хранении, а также информацию об обращении с данным продуктом и данные по эк ологии.

Хранение

Рекомендуетсяхранитьионообменныесмолывсухомместепритемпературевышенуля, под к рышейи без прямого воздействия солнечных лучей. Для предотвращения термического и осмоти ческогошока замороженные ионнообменные смолы должны быть медленно разморожены при комнатнойтемпера туре.

Упаковка

Мешок - 25 Литров

Рекомендации по консервации

Во избежание обезвоживания ионообменных смол и/или их микробиологического биообрастания в периоды длительных остановок производства необходимо соблюдать специальные меры предосторожности.

Предотвращение обезвоживания

Чтобы не допустить полного высушивания ионита, фильтры с ионообменной смолой должны оставаться заполненными водой, иначе гранулы смолы при повторной гидратации могут растрескаться или расколоться.

Защита от микробиологического биообрастания

В периоды длительной остановки производства микроорганизмы (водоросли, бактерии и т.д.) могут размножаться при благоприятных для этого условиях (температура, рН, присутствие органических веществ). Эффективным методом предотвращения биобрастания фильтров в периоды остановки производства является применение высококонцентрированных (бактериостатических) растворов поваренной соли, ингибирующих рост микроорганизмов. В этом случае ионитный фильтр полностью заполняется 10–20 % раствором хлорида натрия на период остановки производства. Перед последующим пуском смолы в работу необходимо провести двойную регенерацию для перевода ионита в рабочую форму.

Внимание: На время консервации необходимо в обязательном порядке сбросить давление с фильтра, отключить питание. В помещении всегда должна быть температура выше +5 °C

В случае выгрузки ионита из баллона необходимо помещать его в герметичную упаковку предварительно проведя регенерацию солевым раствором без прямоточной отмывки ионита. При хранении в минусовой температуре перед засыпкой в баллон, упаковку с ионитом рекомендуется оставить на сутки в помещении с температурой не ниже +10 ОС для естественного оттаивания.

